
Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 1 - PA-1C600-01
Section 20

Issue 1, October 1977
AT&TCo SPCS

Generating MER T Software

Paragraph Name
9 adm

10 appl
13 bdev
12 cdev
3 conf.d
5 elib

15 fmgr
20 header.s
21 kern

4 kfs

6 ,klib

23 mon
14 prnge

24 publib
7 rlib

22 sgen
8 slib

II syslib
16 ukfs
17 umx
16 unixfmgr

These instructions are intended for installations which have a MERT system running (see
section 19) and want to (re-)generate MERT for one of the following reasons:

A. You have booted the MERT distribution system, and this is the first attempt at generat-
ing a customized MERT operating system.

B. An existing MERT installation wants to upgrade to the new Release 0.
C. An existing MER T Release O installation wants to make a change to the system, for

example add a new driver or install a modification.

For ease of reference, paragraphs of this section are listed below in alphabetical order with the
paragraph number preceding each directory or file.

Contents
administrative programs.
application tests for new MERT-UNIX features.
block and record device drivers.
character device drivers and system library.
A file defining device channels.
source files for lllbllibe.a, the library routines to interface EMT's
from supervisor processes to the kernel.
MER T file manager files.
A file in sgen with global system options
kernel, including memory manager and scheduler, and initiali-
zation process.
UNIX user programs which differ from those of standard of
UNIX and some MERT file system utility programs (See ukfs
for their UNIX file system counterparts).
source files for llibllibk.a, the library routines to interface
EMT's from kernel processes to the kernel.
system monitor process and analysis programs.
process manager, nub process and termination supervisor
(pkill).
test programs for public libraries in user programs.
source for l!ib/libr.a, the library routines which interface the
MERT-UNIX system calls to user programs.
files used to sysgen a new system.
source for /lib/libs.a, some general routines used by supervisor
processes.
System Library
UNIX file manager utilities (see kJs)
MERT-UNIX supervisor.
unix file manager.

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 2 - PA- l C600-0 l
Section 20

Issue l, October 1977
AT&TCo SPCS

All of the above are directories or files in lsrclmertsrc. Also in !src/mertsrc are a number of
descriptor or header files (* .d files) which are included when compiling various MERT routines
and programs.

1. Preparing for Recompilation
First, back up your current system, unless you have just come up on the distributed root

system for the first time. Before you start doing anything to your current system (which has
been in use for some time and therefore is assumed to contain some valuable information),
you should back up your system. Preferably, make a disk dump (dump-VI//) of your entire
disk (the one containing the root file system if you have more than one). Then start with a
new disk pack onto which you restore irestor-Vl //) the dump taken before. (Of course, you
could do simply a disk-to-disk copy with pcp-e.)

You should be aware of a potential problem area regarding the disk layout as understood
by the disk driver software. Previous MERT systems map the RP disks in ways different from
Release 0. Release 0 follows the UNIX Generic 3 standard disk layouts as defined in the
appropriate pages of Section IV, UNIX Programmer's Manual. Starting with a new disk layout
is highly recommended.

Second, re-use existing descriptive file, where appropriate, such as ldev, ldevlttys, conf. cl,
letclrc, header.s, if you are upgrading from an existing customized system. However, changes
for standardization may be necessary in ldev; since the major device numbers should agree with
Table 7.2 below and the kernel processes may have to be renamed in Iprc. From your old
source, you also like to have available the driver source if it has nonstandard device addresses.
Find out where they are, so that you can compare them with the distributed source. (The old
source should not be mounted on lsrc, but on some other mount point, e.g. /crp).

Third, prepare to read the Source Tape. You need the binary of the cpio command and a
shell procedure extract.sh containing invocations of cpio to read the Source Tape. You must
obtain these two files from the root file system on the File System Tape. If you're coming up
from scratch (Section 19), you will already have mounted this file system on src; so skip this
paragraph. However, if you are not running on the distributed root system, you must extract
the source from the supplied Source Tape, which is in cpio format. You don't have the cpio
command though, and the extract shell using cpio for reading in the Source Tape onto your sys-
tem. To acquire these two pieces from the distributed root file system, mount the File System
Tape, then copy it into some free file system, and mount it on a mountpoint, e.g. [mnt, and
copy the cpio and extract.sh files:

dd if=/dev/mto of=/dev/rp2 count=4000 skip=lO0
/etc/mount /dev/rp2 /mnt
cp /mnt/bin/cpio /bin
cp /mnt/bin/extract.sh /bin
chrnod "'? 66-- /bin/ cpio -- /bin/ extract.sh

Fourth, transfer source from tape to disk, by invoking the shell command:

extract.sh all

which will read the whole Source Tape into the structure under src. Follow this with a du -a
command, to make sure none of the files read has zero length. Reread missed files using cpio-i.
If you are an RK-only installation, follow the instructions given in Section 19, under 9. The
Source Distribution Tape, to extract smaller portions from the tape. The lsrc substructure will

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 3 - PA-1C600-0l
Section 20

Issue 1, October 1977
AT &TCo. SPCS

now contain the following directories:

mertsrc
cmd
lib
mdec
makefile

MERT operating system source
user command source

library source
boot programs source
shell scripts to remake cmd

Familiarize yourself with this organization of the source.

Fifth, recreate the C compiler and associated libraries. The C language will probably not
undergo major changes in the future. More likely, the C compiler will be getting improved
continually, e. g. the code generation. Newly distributed software will take advantage of the
changes, and, more crucially, will have been tested only with the latest compiler. It is therefore
essential, that you recreate the compiler for your system very early. This is mandatory, if you
have no floating point hardware on your system, since the distributed software, (except for the
bootable distribution system), assumes the presence of floating point hardware. Since it cannot
be assumed that the newly distributed compiler is compilable with the old compiler, you have
to obtain a binary copy of the new compiler from the distributed root system. Proceed as under
'Third' above to get the 'root' file system mounted on /111111, then copy the appropriate binary
files, e. g.:

cp /mnt/bin/cc /bin/cc
cp'</rnnt/ ... --/bin/ ...

Now you execute one of the make files you find in lsrclcmdlc.
The subsequent paragraphs describe various parts of the source which may require editing.

Read through these all; in paragraph 22. sgen you will finally encounter the command to gen-
erate the whole operating system.

If all the source has been edited etc., it would suffice to use the shell command makemcrt
which aids in the remaking of the MERT operating system. However it is not recommended to
do this the very first time. Rather, you should go through these procedures step by step and try
to understand what is going on. After you have gone through it successfully once, you may use
the abbreviated procedure.

In the source structure mounted under lsrc, you will find, besides the source of MERT
and UNIX, a multitude of system generation aids explained in the next paragraph. These have
the advantage of using a new program called make, which can save you considerable time when
repeatedly compiling any source.

2. Generation Aids and General Formats
The discussion below assumes you have booted up the appropriate MERT system from

your root file system disk. It assumes you have formed a C compiler with or without floating
point as appropriate for your machine. The MERT source file system is assumed to be
mounted on lsrclmer tsrc.

Each subdirectory of lsrclmertsrc contains three shell scripts which can be used for recom-
piling all the elements within the directory. Two of the shell scripts use the make-I command
and will only remake an element if it is out of date. The third shell script unconditionally
remakes every element within a directory. One make shell script assumes source dependencies
and the other make shell script assumes object dependencies. To distinguish between the
three, the following naming conventions have been adopted:

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 4 - PA-1C600-01
Section 20

Issue 1, October 1977
AT&TCoSPCS

1. make" [os1.sh
2. *[os].mk
3. run

1. is the general form of a make shell name; 2. is the general form of a make descriptor file;
and 3. is the name of the shell that recompiles every element within a directory. Each make
shell begins with the word make. The '*' is usually the first four characters of the directory
name. The 'o' or's' signifies a make shell object or source dependency. As an example:

makebdevo.sh
tuprco.mk

The file makebdevo.sh is the name of a make shell which would remake any block or record
device process in bdev that is not up-to-date. The shell assumes that all the corresponding *.o
files are in the directory. If not, they are remade. The file tuprc.mk is a make descriptor for the
process tu (the TU16 device driver). This file lists the dependent files of the target tuprc.

The make shells often reference the run shell scripts when it has been determined that a
element within a directory has to be remade. The run shell scripts contain the various com-
mands that remake an item. These run shell scripts and make files should be consulted before
you remake any item. The procedural steps below will frequently refer to run shell scripts.
When remaking an item use the make shell scripts instead of the run shell scripts. They have
the advantage of speed and dependency accuracy. They won't compile everything in sight, and
if module x, y, and z depend on module a, and module r, s, and t do not, and module a has
changed, then only module x, y, and z will be remade.

To further aid in the generation process, a shell called makemert has been provided. The
command:

makemert run [filemanager]

recompiles every directory under /src/mertsrc unconditionally. However, this takes approxi-
mately one hour on the 11/70 without doing a sysgen. Replacing filemanager with the string
unix or mert recompiles the appropriate filemanager. Remember that the system is delivered
with a MERT file manager. Some installations may prefer to run MERT with a UNIX file
manager. This allows you to run both the UNIX and MERT operating systems on the same file
system. See paragraphs 16. and 17. below for instructions.

The command:

makemert mko [file manager]

conditionally recompiles each directory under /src/mertsrc, using the object-dependent make
files. It will also perform a sysgen and squirrel away the old unix, mert, and krn.sym. The com-
mand:

make me rt mks [file manager]

performs the same as mko above but uses the source-dependent make shells.
If you only wish to regenerate the operating system and not every directory under mertsrc,

then in the directory sgen you will find two make shells that have been provided for this pur-
pose. They are called makemerto.sh and makemerts.sh.

To generate a completely new system, the following procedures should be followed. If
this is your first attempt at 'sysgening' a system, follow these steps closely. Most steps may be
skipped if you already have a running system and just want to add a few new drivers.

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 5 - PA-1C600-01
Section 20

Issue 1, October 1977
AT&TCo SPCS

3. conf.d
The 'conf.d' file contains definitions of how many logical channels of each device are to

be included in your system. Edit it according to your configuration. The 'BASE' definitions
should not be altered without recompiling all source files which include 'conf.d'. In particular,
kfslinit.c, kfs/ps.c and kfsltkill.c should be recompiled along with any character device drivers
affected. lnit.c, ps.c, and tkill.c can be made by running makekfs.sh or makekfso.sh.

4. kfs
This directory contains the source for many user programs which differ from UNIX

source as well as all of the file system utility programs. The latter are contained in two sub-
directories: mkfs contains the utilities and programs that go with the MERT file manager (see
15. below), whereas ukfs contains utilities and programs that go with the UNIX file manager
(see 16. below). Each of these subdirectories contains the shell files for making as well as
installing the respective commands. Switching from one file manager to another requires
remaking of the associated subdirectory (mkfs or ukfs),

The 'run' file contains the shell script for recompiling all of the source code in this direc-
tory.

Note that the file 'ttyc.c' has a number of tables which contain the list of the 'tty' device
file names for the various devices which can be used as login terminals. The number of entries
in each table should be the number of. logical channels allowed on the corresponding device.
For example, if NDHll is defined as 10 in 'conf.d', there should be ten characters in the
'ndhl 1' table structure. Both the 'ps' and the 'init' commands include this 'ttyc.c' file when
'/bin/ps' and '/etc/init' are compiled, respectively.

The 'init.c' file contains another important table which should be looked at carefully
before compiling. This table contains a list of special 'getty' routines to be invoked when a par-
ticular login terminal is started up. Make sure that the entries in this table are complete for
your system. Also make sure that the order of the entries in this table corresponds to the
entries in the '/etc/ttys' file. This file contains the list of all the legitimate login devices which
may start up a user process. The file is accessed by the '/ etc/init' program. Each entry in
/etc/ttys consists of three characters followed by a newline. The first character is either O or 1, 1
if the device is to be a valid login device. The second character is the last character in the
name of a typewriter, e.g. 'a' refers to '/dev/ttya'. -The third character is used as an argument
to the '/etc/init' program to decide which '/etcigetty' to execute to read the login name, set
the baud rate and certain default terminal options. For most lines, the third character is 'O'
indicating '/etc/getty', the first entry in the table in 'init.c' is to be executed. For example, if
the third character of an entry is '2', the second entry in the table after '/etc/getty' is used.
See ttys-V for further details.

There are a number of programs which should be changed in this directory to reflect your
default mounted file system devices. The first few lines of these programs (df, check, dcheck,
icheck and ncheck) contain a list of these devices and should be edited accordingly. In addition,
the reconfiguration daemon recdmn source code should be edited so that the proper file systems
are reconfigured automatically once a day. See recdmn-d for a complete description of this pro-
gram.

To compile the other user programs consult the 'run' file for the appropriate shell scripts.
The 'ls' and 'rnknod' programs are included here because they have been modified to recognize
record-type devices.

Bell Telephone Laboratories, Incorporated - 6 •-
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 20

Issue 1, October 1977
AT&TCoSPCS

5. elib
In this directory, the shell script in 'run' should be followed to form the library routines

which interface the supervisor EMT's to the kernel in the library archive file /libllibe.a.

6. klib
In this directory, the shell script in 'run' should be followed to form the library routines

which interface the kernel process EMT's to the kernel in the library archive file llibllibk.a.

7. rlib
In this directory, the shell script in 'run' should be followed to form the library routines

which interface the new MERT-UNIX system calls to the MERT-UNIX supervisor in the
library archive file /lib/libr.a.

8. slib
In this directory, the shell script in 'run' should be followed to form the general supervi-

sor routines used by supervisor processes in the library archive file /lib/libs.a.

9. adm
In the 'adm' directory, consult the 'run' file to recompile all of the maintenance and util-

ity programs. The shell scripts described in the 'run' file will form the following programs: adb,
sdb, kdb, cdb, ldp, ldu, sgen and xusr.

10. appl
This directory contains some application and utility programs as well as some test pro-

grams for the new MERT-UNIX system calls (those not existing under UNIX). The applica-
tion programs which should be compiled include acp, errproc, falloc, fmove, kdmp, ktime, pep, pio,
run and tp. The tp command differs from UNIX by having additional asynchronous 1/0 capabil-
ities. Refer to the MERT Programmer's Manual for the use of the other MERT-UNIX com-
mands. Consult the 'run' file for instructions on recompiling the source for the commands.

11. System Library
The time of creation of the system library is very important in the generation of a new

MERT system. Consult cdev/libsh for the shell sequence required to form a new system library.
The library is generally put in /mrtlsyslib and is used by character device drivers which require
the system library routines. It is loaded in the bootable image of MERT. It is important that
the version loaded here is the same version that is used by the character device drivers; other-
wise these character device drivers will fail to load when the system is booted up. Note: if you
make a new library and use it in the boot image, all character device drivers which reference
the system library must be recreated.

12. cdev
Character devices on the system must have entries in directory /dev (see 'l.Special Files, in

Section 19), and in file /etc/ttys if they are used for remote access (see 8.Multiple Users in Sec-
tion 19). Character devices are also affected by entries in global source files conf. d (see 3.
above), kfslinit.c, and kfsltty.c (see 4. above).

The specific source for the individual devices is contained in directory cdev including the
following:

de DCl 1 asynchronous communication device

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 7 - PA-1C600-01
Section 20

Issue 1, October 1977
AT&TCoSPCS

dh DHl 1 programmable asynchronous communication device
dl DLl 1 serial asynchronous device for Satellite Processor System
dm DMll multiplexed asynchronous device
dn DNl 1 automatic calling unit
dp DPl 1 synchronous communication device
dr DRll general device interface
du DUl 1 synchronous communication device
kl KL 11 asynchronous console interface
Ip LPl 1 line printer
mem memory device driver
sdh DHl 1 programmable asynchronous communication

device for Satellite Processor System

For each driver there is a shell script file which should be consulted to form the appropriate
driver process file. For example, for the console device driver, the kl, there are four files of
interest:

kl.c
klmch.s
klsh
kl.b

source code
machine language assist
shell script
specification file.

In general, for each driver one should check that the interrupt vector(s) and the device register
address are defined correctly in the source code for the driver. Note also that these must
correspond to the interrupt vector(s) and device address specified in the 'sys.b' file in the 'sgen'
directory, as described in a later section. If this is not true, one will not be able to load the
device driver at all since the attach interrupt EMT will fail. The 'klsh' file contains:

cc -c -0 kl.c
as klmch.s;mv a.out klmch.o
ldp kl.b

The 'kl.b' specification file contains parameters to be used by the 'ldp' utility program:

mode: kl
interrupt:
{

rconsol,klrint0
xconsole,klxint0

emt:
event:
ifile:
ofile:
idchar:

klemt
klevent

kl.o klmch.o
klprc
K

The various keywords are explained in detail in ldp-e in the MERT Programmer's Manual. The
mode keyword here indicates that the kl driver is a kernel mode process and is to include the
system library. The interrupt keyword indicates the names of interrupt vectors which are
defined in 'klmch.s'. The emt and event keywords specify the emt and event entry points,
respectively. The ifile keyword indicates which files are to be link-edited to form the image of
the kl console kernel device driver. The ofile keyword indicates where the image of the driver
is to be loaded. This is a crucial specification. The process image file is created in the direc-
tory. There is a shell called move2process, that copies the file image to the appropriate
/prc/cdX. Check that this shell is correct for your system. There is an important connection

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 8 - PA-1C600-0l
Section 20

Issue 1, October 1977
AT&TCo SPCS

between the process image in the '/pre' directory and the file system name as listed in the
'/dev' directory. See 7. Special Files in Section 19, for a further explanation. Note that the
console device driver is always loaded as '/pre/ cdO' (the first character device driver). The
idchar keyword specifies the one-character code by which the driver is known in the file
'/mrt/kprc'. See ps-e in the MERT Programmer's Manual for a further explanation of this con-
nection. When the process image is loaded in the ofile file, the library '/lib/libk.a' is searched
for any undefined routines.

Finally, here are some hints on some of the drivers. There are certain magic numbers
and configuration parameters imbedded in various device drivers that you may want to change.
The device addresses of each device are defined in each driver. In case you have any non-
standard device addresses, just change the address and recompile.

The DCll driver is set to run 14 lines. This can be changed in 'conf.d'.
The DHll driver will only handle a single DH with a full complement of 16 lines. If you

have less, you may want to edit 'conf.d'.
The DNl 1 driver will handle 3 DN's. Edit dn.c.
The DPll and DUll drivers can only handle a single DP and DU, respectively. This

cannot be easily changed.
The KL/DL driver is set up to run a single DLl 1-A, -B, or -C (the console) and no

DLll-E's. To change this, edit 'conf.d' to have NKLll reflect the total number of DLll-
ABC's. So far as the driver is concerned, the difference between the devices is their control
and status register addresses (which are assumed to be consecutive).

The line printer driver is set up to print the 96 character set on 80 column paper (LPll-
H) with indenting. Edit lp.c,

13. bdev
This directory contains all of the source for the block and record device drivers. This

includes the following:
hp RP04 disk drive
hs RS04 disk drive
ht TU16 tape drive
rf RFll fixed head disk drive
rk RK0S disk cartridge
rp RP03 disk drive
tc TCll DECtape
tf Telefile disk drive
tm TUl0 tape drive.

For each driver there is a shell script file which should be consulted to form the appropriate
driver process file. For example, for the RKOS device driver, the rk, there are three files of
interest:

rkprc.c
rkprc.b
rksh

source code
specification file
shell script.

One should check that the device register and interrupt vector addresses are defined correctly in
the source code for each driver on your system. Note also that the interrupt vector address
must correspond to the address specified in the 'sys.b' file in the 'sgen' directory, as described
in a later section. If this is not true, one will not be able to load the device driver at all since

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 9 - PA-I C600-01
Section 20

Issue 1, October 1977
AT&TCo SPCS

the 'attach interrupt' EMT will fail when an attempt is made to load the device driver. The
'rksh' file contains:

cc -c -0 rkprc.c
ldp rkprc.b

The 'rkprc.b' specification file contains parameters to be used by the 'ldp' utility program:

mode:
open:
ifile:
ofile:
interrupt:
event:
swap:
ubmap: 8

The various keywords are explained in ldp-e in the MERT Programmer's Manual. Most of the
keywords used above are discussed in the preceding paragraph on the character device drivers.
Note that this is a kernel-mode device driver which does not use the system library. The inter-
rupt entry point is given as '_rkintr' which is defined in 'rkprc.c'. The hardware priority is
given by the key 'rkl 1' which is a DEC standard device defined in the 'ldp' program. The
event entry point is entered at priority 5 as defined by the device hardware priority by the
'rkl 1' key. The open keyword indicates that the driver accepts open and close messages. This
is an important keyword for drivers that are loaded dynamically since it assures that all out-
standing 1/0 messages are serviced before the final 'close' message is acknowledged and the
driver process is removed from memory. If the driver process is to be a part of the 'boot'
image, 'open' and 'close' messages are not necessary. Then the code to deal with these mes-
sages may be (but should not be) commented out of the driver. The swap keyword is necessary
if a swap area is to be allocated on the disk. Similarly, the ubmap keyword is used to define
how many 4K words sections of the UNIBUS map on the PDP-11/70 must be allocated for this
device. It is only required for UNIBUS devices on the PDP-11/70 computer but not for
MASSBUS devices. Again the ofile keyword is crucial here. As in the cdev directory, check
that the move2process shell is correct for your system, since there is an important connection
between the process image in the '/pre' directory and the major device number of the device as
listed in the '/dev' directory. When the process image is loaded in the ofile file, the library
'/lib/libk.a' is searched for any undefined routines.

All of the disk and tape drivers (rfprc.c, rkprc.c, rpprc.c, tmprc.c, tcprc.c, hsprc.c, hpprc.c,
htprc.c, tfprc.c) are set up to run 8 drives and should not need to be changed. The big disk
drivers (rpprc.c and hpprc.c) have partition tables in them which you may want to experiment
with. However, they comply with the documentation in RP-IV and HP-IV.

k

rkprc.o
rkprc
rkll,_rkintr
_rkstrategy
4000.,872.

In summary, for each block and character device driver make sure that the interrupt
vector(s) and the device register addresses as specified in the source code for the driver
correspond to entries in the 'sgen/sys.b' file for your system. Also make sure the ofile keyword
for each of the drivers you wish to load is correct. Then you may run the corresponding shell
scripts. Note that the correct device names with the appropriate major device numbers and the
correct type are created in the '/dev' directory using '/etc/mknod'. The only record-type dev-
ices are the two magtape drivers. The others are all block-type devices.

Bell Telephone Laboratories, Incorporated - 10 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 20

Issue 1, October 1977
AT&TCo SPCS

14. pmge
This directory contains the source for three supervisor processes. One need only to run

the three shell scripts in nubsh, pkillsh and pmsh to form the file images of these three
processes. The image of the 'nub' process which starts up all other supervisor-user processes is
created in 'sgen/nubprc'. The image of the 'pmgr' process is created in 'sgen/pmprc'. The
image of the 'pkill' process is created in '/prc/pkill'. For all supervisor processes, the library
'/lib/libs.a' is searched for any undefined routines by the 'ldp' program.

15. fmgr: MERT File Manager
As a default, the system will be created with the MERT file manager. Optionally, a UNIX

file manager may be created instead, as explained below under 16.
If you are running with a UNIX file manager and want to switch to a MERT file manager,

remake directories /src/fmgr and lsrclkfs, in that order. Performing the latter will install the
changed file manager in the header.s file and remake and install the affected commands.
Instructions for creating the MERT file manager process in 'sgen/fmprc' are contained in the
'run' file in this directory. The 'she' file contains the script for compiling all of the modules
which make up the file manager process. There are two parameters in 'param.d' which one
may wish to change. The NBUF parameter is set at 10 and the NMOUNT parameter is set to
4. If more mounted file systems are required, the NBUF and NMOUNT parameters may be
increased. Make sure that all of the modules which include these two parameters are recom-
piled. The number of tasks which the file manager can handle is set at 8. If more are required,
NT ASKS must be changed in 'param.d' as well as making some corresponding changes in
'fmgr.s'. It is doubtful that this value should be increased, however. To produce the file image
of the file manager process, run the 'sh!' script file.

16. unixfmgr: UNIX File Manager and ukfs directory

If you are running with a MERT file manager and want to switch to a UNIX file manager,
remake directories /src!unixfmgr and lsrclkfslukfs, in that order. Performing the latter will install
the changed file manager in the header.s file and also make and install the appropriate utilities
ncheck, dcheck, etc. The ukfs directory contains counterparts of all programs in kfs that are file-
system dependent, including shell and makefiles for generation and installation. The comments
above under 15. about the number of buffers and number of mounted file systems also apply.

17. UNIX Supervisor
The various modules which make up the UNIX supervisor process can be compiled by

running the 'she' script file:

cc -c -0 *.c
as mch.s;mv a.out mch.o
cc -c sys4.c

The 'sys4.c' file must be compiled separately without the optimizer, since the C compiler
optimizer does not treat the transfer within a routine correctly for the 'sys fork' system call. To
increase the number of system buffers available to all UNIX users, increase the value of NBUF
in 'param.d' (normally set to 8). The upper limit for this parameter is probably about 24. To
produce the final file image of the UNIX supervisor process, run the 'sht' script file:

ldp unix.b

This produces the process image in the file 'test'. To ensure that this is a proper supervisor
process, one may 'run test' (see run-e) and 'login' to the new supervisor to perform some tests.

Bell Telephone Laboratories, Incorporated - 11 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-0l
Section 20

Issue 1, October 1977
AT&TCo SPCS

This is the recommended procedure for testing out a new UNIX supervisor when modified or
new system calls are installed. When one is satisfied that the UNIX supervisor is working prop-
erly, perform the following commands as superuser:

cp test /prc/nunix
chdir /pre
mv unix ounix;mv nunix unix;sync

This ensures that the new UNIX supervisor is installed properly, saving the old process image
in case of problems. A simple copy of the new supervisor file to the old supervisor file may
well create havoc, since the common text and data segments in the supervisor would not be
loaded since their segment names would correspond to those of the old segments. Note that
'mv'ing a file does not change the names of the segments making up a process.

A reboot of the system is not necessary to install a new UNIX; however it is recom-
mended at some time, to avoid the loading of two UNIX supervisor processes.

18. Commands
The command source is contained under /src/cmd Single file commands are file entries in

this directory, multifile commands such as yacc are subdirectories. Aids to remake commands
are contained in lsrclmakefile.

19. Time Zone Conversion
If your machine is not in the Eastern time zone, you must edit (ed-I) the subroutine

/src/lib/libc/clibl/ctime.c to reflect your local time. The variable 'timezone' should be changed
to reflect the time difference between local time and GMT. For EST, this is 5*60*60; for PST
it would be 8*60*60. This routine also contains the names of the standard and Daylight Savings
time zone; so 'EST' and 'EDT' might be changed to 'PST' and 'PDT' respectively. Notice that
these two names are in upper case and escapes may be needed (tty-IV). Finally, there is a
'daylight' flag; when it is 1 it causes the time to shift to Daylight Savings automatically between
the last Sundays in April and October (or other algorithms in 1974 and 1975). Normally this
will not have to be reset. After ctime.c has been edited it should be compiled and installed in
its library. (See /src/lib/libc/makefile) Then you should (at your leisure) recompile and rein-
stall all programs performing time conversion. These include; (in /src/cmd) date, dump, Is,
cron, mail, pr, restor, who, sa and tp.

20. header.s
This file in the 'sgen' directory contains certain option settings which are important for

your installation (a 'O' means 'no', a '1' means 'yes' in answer to the statement or question at
right.)

fpp =0
pfs = 1
debug =0
.hp =0
.rp =0
.tf =0
.tc =0
.rk = 1

/hardware floating-point processor in system?
/power fail safe recovery routine?
/kernel debugging mode on?
/produce core dump on rp04 (hp04)
/produce core dump on rp03
/produce core dump on telefile disk
/produce core dump on DECtape
/ produce core dump on rk disk

This file is included when assembling various parts of the system in the 'kern' directory.
MERT supports the 11/45 FPll-B and the FPll-C floating point processors. The operat-

ing system as delivered has fpp set to O and therefore has been generated for non-floating point

Bell Telephone Laboratories, Incorporated - 12 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 20

Issue 1, October 1977
AT&TCoSPCS

hardware (this is so the system will boot on non-floating point machines). The 'fpp' flag should
be set to 1 if your system contains a hardware floating-point processor, otherwise to 0. How-
ever, if you run a system with a floating-point unit, have fpp = 0 and come up multi-user, pro-
grams using the floating-point unit may not produce correct results, since the floating-point unit
registers will not be saved in a context change. You should therefore regenerate the system
with fpp = 1. The commands that come with the system have been generated for floating point
machines. If you do not have floating point hardware, then the following directories will have
to recompiled:

/ src/lib/liba
/src/lib/libc
/src/cmd/cc
I src/ cmd/ secs
/src/mertsrc/adm/adb

The power fail safe option may be included by setting the flag 'pfs' to 1. This ensures
that all volatile registers are saved in memory when power goes down and that each process in
the system receives an INIT message when power comes back on.

The debug flag is normally set to 0. It should only be set to 1 when one wishes to debug
the kernel by causing the system to crash when certain detected conditions occur. It should
also be set to 1 if one wishes to collect statistics with the kernel monitor process (see below
under 23. mon), and if you wish an EMT histogram from the ktime command.

Of the remaining five flags, only one should be set to 1, the others to 0. The flag which is
set to 1 (one of .hp, .rp, .tf, .tc and .rk) defines on which device a dump of memory is pro-
duced when the system crashes. Check the 'kern/panic.s' file for the area on disk used for the
dump in each case. It is important that this area not overlap with any file system which may
exist on the disk. It may also be necessary to change the drive number (drvno) if you wish
dumps to occur on a drive different from drive 0.

21. kern
This directory contains the source code for the kernel and the 'init' process which loads

all of the startup processes at boot time. There are a number of shell scripts for forming the
various pieces. The 'run' file contains the complete script:

as -o panic.o . ./sgen/header.s kern00.s panic.s
sh shs
as -o kern.o . ./sgen/header.s kern".s
sh sh!
sh shi

The first line of this file assembles the panic routine into 'panic.o'. The second line assembles
and compiles various pieces of the scheduler. Most of the scheduler is written in C. The third
line assembles the other parts of the kernel into 'kern.o'. Finally all of the pieces of the kernel
are link-edited together by 'sh!' producing the final output file in 'sgen/kern.o'. The initializa-
tion process is assembled by 'shi' producing the image of the process in 'sgen/init.o'. Note the
use of the 'header.s' file in many of these shell scripts. If a change is made in 'header.s', make
sure that all of the shell scripts which specify 'header.s' are run again.

Bell Telephone Laboratories, Incorporated - 13 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 20

Issue 1, October 1977
AT&TCo SPCS

22. sgen
This directory contains all of the object modules which make up the boot image of the

MERT Operating System:

fmprc
init.o
kern.o
lcor.o
nubprc
pmprc

file manager process
initialization process
kernel (includes scheduler and memory manager)
low core image
nub process
process manager

The other important files in this directory include the 'sys.b' specification file which contains
lines consisting of a keyword followed by a parameter list:

kernel
lowcore
swapprc
rootprc
fmgr
pmgr
init
syslib
nub
user
user
swapdev
rootdev
messages
processes
ports
memory
nrsde
console
rkll
rpll
hpll
tfl 1
tel 1
tmll
tull
stack
V 314,170500
V 320,160020
V 324,160020

kern.o
lcor.o
/prc/bd0
/prc/bd0
fmprc
pmprc
init.o
/mrt/syslib
nubprc
/prc/cd0
/prc/unix
00
00
32.
50.
2
0,64.
180.

768.
/* dmll-bb - non-standard device ordering
/* dhl 1 receiver - non-standard device ordering
/* dhl 1 transmitter - non-standard device ordering

The keywords and the allowable parameters are discussed in detail in sgen-e. Of the six object
modules listed previously, five were generated from other directories. The 'lcor.o' file is pro-
duced by 'sgen' itself from the assembly language file 'lcor0.s' and 'lcorl.s'. Of these, 'lcor0.s'
is generated by the 'sgen' program from the low core vectors specified in 'sys.b' and from the
other keywords which affect low core, such as number of message buffers, number of resident
segment descriptor entries, etc. The 'lcorl.s' file contains constants which must be in I = D =
physical memory.

Bell Telephone Laboratories, Incorporated - 14 -
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 20

Issue 1, October 1977
AT&TCo SPCS

Both root and swap processes are included in the boot image. They are normally the
same. The system library is almost always included since most login character device drivers
include references to the system library. Note that the system library is kept in the '/mrt'
directory. The version of the system library used must be the same as that used by the charac-
ter device drivers being used. The rootdev and swapdev keywords specify the major and minor
device numbers of the root file system and the swap area, respectively.

The user keyword is used to specify which processes are started up by the kernel initializa-
tion process at boot time. Normally the console device driver and the UNIX supervisor
processes are started up. If your system has a DH controller,the corresponding character device
process should also be started up at boot time.

The last keywords in the 'sys.b' file starting with 'console' specify devices which have
interrupt addresses and control and status registers which must be specified. All of the devices
which are connected to your system, whether or not the driver process is part of the boot
image, must be specified here. The interrupt vector address for each device must correspond to
that specified in the driver's specification file in the 'bdev' or 'cdev' directory. Otherwise that
particular device driver process cannot be loaded at run time. The first keywords correspond to
standard DEC devices and are "built-in" v keywords. An example of a non-standard vector is
shown for the DH device in the last three lines of the 'sys.b' file. Extraneous keywords in this
list may be removed.

Having verified that the 'sys.b' file is correct for your configuration, you write

sgen sys. b mert

to produce a bootable core image in 'mert'. Note that a symbol table for the kernel is also pro-
duced in 'krn.sym' in the 'sgen' directory. The symbol table corresponding to the currently
running system should be kept in '/mrt/krn.sym' since it is used by the process status (ps-e)
and the kernel debugger (kdb-e) programs. To test out the new MERT boot image:

cp mert /tmert
sync

Then halt the system and boot up ltmert. If the system crashes, bring up /mert and use 'kdrnp'
to produce a core image of the crash in 'kore' in the 'sgen' directory. Use the kernel debugger
'kdb' to debug the dump. When you are confident that the system is working:

mv /tmert /mert
cp krn.sym /mrt/krn.sym

Note that the shell makernertlosl.sh does most of the above for you.

23. mon
This directory contains source code for a kernel monitor process. The process collects

scheduling information and puts it in a file 'profile'. The 'log' command in this directory can
be used to examine the output of the monitor. Read the 'roff me' file for instructions on how
to compile and load the process, how to collect statistics and ho~ to examine the output.

24. publib
This directory contains some examples of the use of public libraries for UNIX user pro-

grams. Examine the 'run' shell script file for an example of putting together a program which
includes two libraries.

